
International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 1
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Software Testing Strategies and Current Issues
in Embedded Software Systems

Sheena Singh, Amandeep Kaur, Kapil Sharma, Saurabh Srivastava

Abstract: software testing is a very important phase for checking the correctness and achieving reliability measures of a product. Once software is
completed it is passed through testing process, now days, some life cycle models continuously test the software throughout the development
phase. Two major testing techniques are Black-Box and other one White-Box testing. In this paper we compare few pre-existing black box and
white box testing process with a new white box testing technique implemented using ant colony optimization algorithm and present some real life
examples of software bugs that are found in embedded systems.

Index Terms: Software testing, Functional testing, Structural testing, test cases, black box testing, white box testing, Testing techniques.

1 Introduction:

Software testing is used for checking the correctness
of software. A software must be a bug free software if
we want to prevent loss of life or resources. A billion $
satellite launch project was turned into ashes because
of a software bug. Thus testing of each and every
module is necessary. Testing can be performed either
in black box way or white box also known as functional
and structural testing respectively. With the intent of
finding software errors so that the errors can be
corrected before release of software to the end users
the testing is performed.

Why testing is important?

On April 26 1994 Chinese airplane, airbus 8300
crashed killing 264 people, similarly a Canadian
therac-25 radiation therapy machine malfunctioned
due to software bug and increased radiation causes 3
people dead and 3 others critically injured. In may
1996 a U.S. bank bear a loss of $9.2 billion as funds
were transferred to 823 customers of that bank. There
are many more similar cases like mentioned above
which are live example of damages caused by a
simple software bug.

Testing principles

There are seven major testing principles which must
be considered while testing a product. All these
principles collectively tell us about the pros and cons of
the process of testing.

 Testing shows the presence of defects
 Exhaustive testing is impossible
 Early testing must be done
 Defect clustering

 Pesticide paradox
 Testing is context-dependent
 Absence of error is a fallacy

First point is very usual as we need to find bugs in
software thus we test it. Now suppose if we have 10
fields to be filled with 5 different inputs then total no. of
test cases will be as large as

5^10 = = billions (approx.)
Thus, exhaustive testing is quite impossible as it will
take lot of effort and resource to test all the possible
combinations within certain time limit.
Early testing will provide you clear idea about the
software and bugs can be detected for every simplest
module of a software product.
Defect clustering can be done from testers experience
as software may have many bugs in a single module
which can be clustered out to be tested.
But, pesticide paradox is something which says that if
you are using same set of test cases again and again
then chances of finding defects reduces, thus we need
to regularly check and modify our test cases on regular
basis.
Even after all this effort you can never claim your
software as bug-free software. On the launch of
windows 98 in 1998 during the public demonstration
windows 98 was crashed which was the first operating
system designed for public use including web-friendly
elements. Thus, testing reduces the probability of
undiscovered defects in any software.
Testing is context dependent means; each software is
tested in different manner i.e. an e-commerce site will
be tested in different manner than any social
networking site.
Each and every testing method has its some own
advantages and disadvantages. Sometimes there are
bugs that cannot be found using black box or only
white box alone.
Majority of the applications are tested by black box
testing method. We need to cover a majority of test
cases so that most of the bugs get discovered by
black-box testing.
Black box testing occurs throughout the software
development process i.e. in Unit, Integration, System,
Acceptance and regression testing stages.

————————————————
 Sheena Singh is currently teaching as an assistant professor in computer

science and engineering department at lovely professional university,
Country, PH-9646689681. E-mail: sheena.15740@lpu.co.in

 Amandeep Kaur is currently pursuing masters degree program in
computer science and engineering department at lovely professional
university, Country, PH-9465080714. E-mail:damandep4@gmail.com

 Saurabh Srivastava is currently pursuing M.tech in computer science and
engineering department from lovely professional university, India, PH-
8699499269. E-mail:iam100rabh@gmail.com

 Kapil Sharma is currently pursuing M.tech in computer science and
engineering department from lovely professional university, India, PH-
8283809270. E-mail: kapilsharma701@gmail.com

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 2
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Tools used for Black Box testing:

Black box testing tools are mainly record and playback
tools. These tools are used for regression testing that
to check whether new build has created any bug in
previous working application functionality. These
record and playback tools records test cases in the
form of some scripts like TSL, VB script, Java script,
Perl etc.

Similar to black box testing there are several white-box
testing methods, which are used to test the internal
functional or underlying code structure of the software.
White-box testing is also known as glass-box testing or
structural testing. The various white-box testing
techniques are listed below.

 Statement coverage
 Branch coverage
 Path coverage
 Condition coverage
 Function coverage
 Multiple condition coverage
 Basis path testing
 Flow based testing

Tools for white-box testing

Cantata++ can be used for statement coverage;
TCAT-PATH can be used for branch coverage,
similarly there are few more software that provide
above mention testing facilities.

x-suds is a software tool to perform basis path testing,
this is one of the most important types of software
testing. It requires control flow graph. The main focus
in this testing is to write test case in such a way that it
covers all possible feasible paths including each and
every node and edges. We make use of CFG in BPT
and we calculate Cyclomatic complexity in order to get
all the possible paths in CFG from start to end node.

McCabe introduced the concept of basis path testing in
1980’s which make use of Cyclomatic complexity. But
by just calculating possible paths doesn’t ease our
work as there are number of infeasible paths in the
control flow graph.

So we need to tackle with infeasible paths if we want
our algorithm to be efficient and thus we can introduce
the concept of ant colony optimization. This is a very
majorly used approach for prioritization of path, as we
can see many applications of ACO, like, travelling
salesman problem using ant colony optimization, ant
colony optimization algorithm is a meta-heuristic
approach which is based on the activity of ants, i.e.
how ants choose a path while taking their food to their
colony.

Formula for Ant colony optimization algorithm can be
given by:

Pij = ((Peij) ^X * (Vpij)^y)

Σ ((Peij)^x* (Vpij)^y)

1) Past Experience or pheromone value (Pe).

2) Visibility of path or heuristic value (Vp).

3) x and y are desirability and visibility factors.

This paper also presents an extended approach of ant
optimization algorithm which shows that chances of
path selection of shorter paths increases. Tables are
showing the improved chances of path selection.

Let us take an example, using ACO in BPT on a
program trivial:

Program Trivial

1. read(n);

2. if (n<0) then

3. write("negative");

else

4. write("positive");

endif;

5. switch (n)

case 1:

6. write("one");

7. write("two");

break;

case 2:

case 3:

8. write("three");

break;

9. write("other");

default:

endswitch;

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 3
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Control flow graph for program trivial

P1 1-2-4-J1-5-6-J2-exit

P2 1-2-4-J1-5-7-8-J2-exit

P3 1-2-4-J1-5-8-J2-exit

P4 1-2-4-J1-5-9-J2-exit

P5 1-2-3-J1-5-6-J2-exit

P6 1-2-3-J1-5-7-8-J2-exit

P7 1-2-3-J1-5-8-J2-exit

P8 1-2-3-J1-5-9-J2-exit

These are eight possible paths which can be
derives from control flow graph but out of these
P1,P2,P3,P4 are only feasible paths, rest are
infeasible paths, because they cannot be executed
using any set of test case.

path nodes traversed ΣPij priority

P1 1-2-4-J1-5-6-J2-exit 6.75 4

P2 1-2-4-J1-5-7-8-J2-exit 7.75 1

P3 1-2-4-J1-5-8-J2-exit 7.00 3

P4 1-2-4-J1-5-9-J2-exit 7.50 2

P5 1-2-3-J1-5-6-J2-exit ------- ------

P6 1-2-3-J1-5-7-8-J2-exit ------- ------

P7 1-2-3-J1-5-8-J2-exit ------- ------

Table of path prioritization using ACO algorithm in BPT

Enhanced formula given as:

Cumulative probability = Pij / max (Pij)

path nodes traversed Σpij/max Pij priority

P1 1-2-4-J1-5-6-J2-exit 0.75 4

P2 1-2-4-J1-5-7-8-J2-exit 0.775 3

P3 1-2-4-J1-5-8-J2-exit 0.777 2

P4 1-2-4-J1-5-9-J2-exit 0.83 1

P5 1-2-3-J1-5-6-J2-exit ------- ------

P6 1-2-3-J1-5-7-8-J2-exit ------- ------

P7 1-2-3-J1-5-8-J2-exit ------- ------

Table of path prioritization using extended ACO in BPT

Blank portion in table represents infeasible paths. The
above table demonstrates the paths with shorter length
or say paths with less number of nodes are having
more probability of selection thus a tester will find the
above approach more feasible to apply than previous
case.

Types of Testing:

Testing is performed on each kind of software, i.e.
either the software is generic, customized or
embedded. In this paper we present some test results
after testing embedded software, before moving onto
analysis of embedded software systems, we define
types of software

Generic: it is software for all, i.e. these software are
available for everyone. E.g. free software open
licensed.

Customized: it is build by focussing on target users
e.g. web sites, desktop applications etc.

Embedded: these are those software which can’t be
modified once installed on hardware system and has
some limited functionality. E.g. washing machines,
microwaves, mobile phones etc.

Now we discuss about different testing techniques
from bottom to top level. Generally we start from unit
testing which is the most basic testing technique in

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 4
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

which we test the most basic module of a software.
Again, integration testing is performed after unit testing
, then functional system testing is performed.
Acceptance testing is done by user or customer. All
this can be understood using the table below.

levels of testing are:

This table can be described as levels of software
testing i.e. from unit to regression testing.

Also for testing we need to design test cases, test
cases planning template can be shown like,

Now we discuss some problems that are found in real
time scenario in embedded systems in present time
and will provide a likely cause of it.

Embedded systems are those systems which are
targeted for a particular machine and cannot be
modified by end users, only it can be used upto
intended level. E.g. mobile phones, in present trend
mobile phone companies have started producing
mobile phones at very cheap rate. It must be noted
that “testing of software” is one of the most expensive
task while developing software, thus, cheaper devices
are not readily tested. That’s why most of the time the
mobile phones software does not work correctly and its
software fails, in general term we say it “hangs”.

Apart from Nokia, erricson, Samsung, and few other
companies there are many new companies that
entered into the market of developing mobile phones
some are Micromax, Karbonn, Celkon, Spice, Lemon
etc. These companies are providing phones at
cheaper rate than above listed companies. These new
companies build the software and install it on hardware

but they really don’t put their emphasis on testing the
software.

There are many major problems that were reported
with many models of their phone.

One model of Micromax have few bugs that were
reported which are listed below.

 Throws exception while typing any number
starting from 97, in this case one cannot dial a
no. which starts with 97 and so on.

 In its dual sim series, it does not work properly
when only one sim is inserted, i.e. phone
hangs and process very slowly when only one
sim card is inserted.

 While charging the phone, one cannot type
message, a sequence of random characters
display when you press any key in message
box etc.

Similarly other phones of other companies were also
reported. These are due to software failure, because
software were not tested thoroughly the bugs remains
which cause problems to end users and also cause
loss to reputation of a company.

In the table described above as levels of software
testing, it shows functional testing must be done by
independent testers. Thus above problems can be
solved using independent testers.

Conclusion:

This paper defines a complete set of both ways of
testing, namely black and white box testing. It also
compares the two white box testing technique i.e.
basis path testing, one with ACO and other with
extended ACO. The paper also gives you idea about
why the software failure occurs in any embedded
system. We must emphasise on testing while
developing a software as it can result harmful to man
and resources as discussed earlier.

References:

[1] P. R. Srivastava “An Approach of Optimal Path Generation
using Ant Colony Optimization” IEEE TENCON 2009

[2] Path Testing Mohammad Mousavi Eindhoven University of
Technology, The Netherlands Software Testing, 2012

[3] “A path-oriented automatic random testing based on double
constraint propagation” Ruilian Zhao, Yuandong Huang
International Journal of Software Engineering & Applications
(IJSEA), Vol.3, No.2, March 2012

[4] black box and white box testing techniques –a literature review,
Srinivas Nidhra and Jagruthi Dondeti, International Journal of
Embedded Systems and Applications (IJESA) Vol.2, No.2, June
2012

[5] White Box Coverage and Control Flow Graphs Venezia Elodie,
2011

[6] L. Copeland, A Practitioner's Guide to Software Test Design.
Boston: ArtechHouse Publishers, 2004.

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 5
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

[7] R. D. Craig and S. P. Jaskiel, Systematic Software Testing.
Norwood, MA: Artech House Publishers, 2002.

[8] E. W. Dijkstra, "Notes on Structured Programming,"
Technological University Eindhoven T.H. Report 70-WSK-03,
Second edition, April 1970.

[9] D. Galin, Software Quality Assurance. Harlow, England:
Pearson, Addison Wesley, 2004.

[10] IEEE, "ANSI/IEEE Standard 1008-1987, IEEE Standard for
Software Unit Testing," no., 1986.

[11] IEEE, "ANSI/IEEE Standard 1008-1987, IEEE Standard for
Software Unit Testing," no., 1987.

[12] IEEE, "IEEE Standard 610.12-1990, IEEE Standard Glossary
of Software Engineering Terminology," 1990.

[13] Aditya P. Mathur “Foundation of Software Testing” ,First
Edition ,Pearson Education,2007.

[14] Thomas J. McCabe “A Complexity Measure”, IEEE
Transactions on Software Engineering, Vol. SE-2, No. 4, pp.
308-320,1976.

[15] Zhang Zhonglin and Mei Lingxia, "An Improved Method of
Acquiring Basis Path for Software Testing," 5th International
Conference on Computer Science and Education, ICCSE 2010,
pp.1891-1894, 2010.

[16] Du Qingfeng and Li Na, “White box test basic path algorithm,”
Computer Engineering, vol. 35, pp. 100–102,123, Augest 2009.

[17] Mohan V and Mala Jeya ,”intelligent ester –Test Sequence
Optimization framework using Multi-Agents”, JOURNAL OF
COMPUTERS, VOL. 3, NO. 6, Academy Publishers,2008.

